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Abstract. The geometrically exact theory of linear elastic rods is used to formulate the general three-dimensional
problem of a twisted, clamped rod hanging under gravity and subject to buoyancy forces from a fluid. The resulting
boundary-value problem is solved by the method of matched asymptotic expansions. The truncated analytical
solution is compared with results obtained from a numerical scheme and shows good agreement. The method is
used to consider the near-catenary application of a clamped pipeline.
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1. Introduction

The problem of a long, twisted rod hanging under gravity occurs in a variety of industrial
applications, such as pipeline laying, cable systems, and conveying. This paper considers a
rod of arbitrary sag which is subject to clamped boundary conditions at the two ends and has
also had twist inserted between the two ends. The objective is to develop a mathematical model
for the three-dimensional stiffened catenary (including both gravity and buoyancy forces) and
to solve the equations by means of matched asymptotics as well as numerical techniques.

In order to motivate a specific application, we idealise a pipeline being laid by the so-called
‘J-lay’ method from a barge on to the sea floor a distabdeelow, as shown in Figure 1. The
pipeline is held clamped on deck of the vessel at an adjustable but fixed@ngléh the
sea surface, and approximately assumes the shape of a catenary. However, under the action
of the wind the barge can undergo a displacement and yaw, which causes the cable to adopt
a non-planar shape. This effect is included in the analysis in a quasi-static way through the
prescription of the surface position and the angle

It is important to note at the outset that the example shown in Figure 1 is illustrative and
is intended to place this work in an industrial setting. It is not our intention to provide a
comprehensive model of all the practical issues, such as the ‘S-lay’ configuration or the use
of stingers associated with pipeline laying and other industrial technologies. This is a detailed
subject, and a more complete discussion of some of the difficulties associated with pipeline
laying can be found in Brown and Elliott [1].

The problem of a clamped hanging rod has an extensive history in the applied mechan-
ics literature. The shallow-sag problem is a prototype example in solid mechanics of the
method of matched asymptotic expansions for linear equatiers Nayfeh [2, pp. 387—

415], Kevorkian and Cole [3, pp. 37-117]. The deeply sagged problem and the presence of
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Figure 1. A pipeline being laid from a barge.

twist insertion complicates the analytical formulation and produces nonlinear boundary-layer
equations. Despite the obvious importance, the problem of the deeply sagged rod hanging
under gravity has a much more limited history of study.

Several papers in the literature deal with boundary layers in planar deep, stiffened catenar-
ies. Plunkett [4] has attempted a matched asymptotic expansion for planar problems involving
drill strings and hanging cables without twist. However, as Rienstra [5, pp. 99-108] has
pointed out, in the formulation of the boundary-layer problem Plunkett linearises his Equation
14, which produces an inner-layer solution that is good only for small angular deflections from
the horizontal, while the outer layer has large angular deflections. Consequently, the matching
procedure is inaccurate. Dixon and Rutledge [6] perform the same analysis for the pipelaying
problem and propagate this mistake. Konuk [7] attempts to correct the two-dimensional work
in Plunkett [4], but continues to make the inner-layer solution mistake. Wolfe ([8] and [9]),
uses the full three-dimensional Cosserat theory of rods to formulate the planar problem for
a wide class of constitutive laws. He proves the existence of solutions, but does not obtain
explicit solutions for any boundary-value problem.

There have also been numerical studies of the three-dimensional problem within the in-
dustrial context. Konuk [7] and [10], studies the three-dimensional pipelaying problem nu-
merically, but considers only dead-load boundary conditibesgrescribed end torque). The
shortcomings of this approach have been pointed out by Brown and Elliot [1] who also treat
the more realistic case of rigid boundary conditions @rescribed end rotation).

This study is an extension of work by Stump and Fraser [11] on the planar convection
of fabric strips under gravity and low tension to the three-dimensional hanging cable. This
paper makes two contributions: first, it gives the general formulation of the three-dimensional
problem including twist, buoyancy, and genecéddmpedboundary conditions; second, the
leading-order nonlinear boundary-layer equation is solved exactly and matched to the outer
solution for arbitrarily large deflections from the horizontal. The analytical expressions are
compared with the results of numerical calculations and show good agreement.

This study is organised as follows. In Section 2, the mathematical formulation is developed
and the key singular perturbation parameter is identified. In Section 3, the asymptotic analysis
for both the inner and outer layers is developed and then matched by use of the notion of an
intermediate length scale. In Section 4, the asymptotic results are compared to a sample of
numerical calculations obtained from a stiff-equation solver. Section 5 closes the study with
some final remarks.
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2. Mathematical formulation

The large deflection theory of linear elastic rods is used to model the general problem of a rod
hanging under gravity and in the presence of buoyancy forces from a surrounding fluid. The
rod is assumed to be circular in cross-section, to be inextensible and unshearable, and to have
a straight untwisted stress-free reference state.

The arclength parameterfor a rod of lengthL is measured from one end of the rod, and
the vector functiomR (s), with components (X, Y, ¥, describes the position of the centre line
of the rod relative to a Cartesian co-ordinate frineg/, k} chosen such that the gravitational
acceleration points in the j direction.

2.1. THE GOVERNING EQUATIONS

The development of the equations governing the inextensible, flexible rod can be found in a
number of reference(g.Love [12, pp. 381-396]; Antman [13, pp. 259-323]; Champneys,
van der Heijden, and Thompson [14]). The system of equations is:

(TR) +V' —mgj+F =0,

(OR) +M + R xV =0,

R -R =1,

R -V =0,

M=B(R xR"),

0 =KN',

(1)

where( )’ denotes differentiation with respect to arclengtfThe various physical quantities
within Equation (1) are: the tensidh; the shear forcd’; the weight per arclength of the rod

mg (m is mass per arclength andis the gravitational acceleration); the buoyancy force per
arclengthF; the twisting momeng; the bending momenW¥; the bending stiffnes8 = ET;

the torsional stiffnes& = G J; and the rate of material twig{’. The constant&; andE are,
respectively, the shear modulus and Young's modulus.the second moment of area ahd

is the polar moment of inertia. For a circular cross-section rod it is straightforward to show
that B andK are related by

K 1

B 1+

(@)

wherev is Poisson’s ratio.

The buoyancy force, which acts perpendicular to the tangent of the rod, has been con-
sidered for the planar rod by Pedersen [15], and is adapted for the three-dimensional rod in
Appendix A. The buoyancy force is given by:

F=mglj—(R- )R +@D~-R- )R], @3)

wherem ; is the mass of the displaced fluid per arclength of the rod. For a cable hanging in
air, m s is often negligible in comparison t@, the mass density of the rod. However, for the
pipeline application shown in Figure i, s can be close ton.
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It is worth pointing out that, despite the appearance, Equation (1) consists of only 11
independent equations due to the inextensibility constraint Equatigrw{figh implies that
all derivatives ofR have only two independent components.

The integration of Equation (1) requires the specification of the 10 geometric boundary
conditions

R(0) = Ao, R'(0) = Bo,

, 4)
R(L)=A;, R(L)= B,
(Bo and B, are unit vectors and thus have only two independent components) and an addi-
tional equation involving the twisting momegk In order to find this last condition, first note
that the formation of the scalar product ®f with Equation (1) gives Q' = 0, which implies
that Q is an unknown constant along the rod. There are two possibilities for specifying the
final boundary condition:

1. Specified torqueThe value of the constam® is prescribed. This is a dead load situation.

2. Specified rotationThe values of all three Euler angles, {/, ¢) shown in Figure 1 are
prescribed. In order for this to be consistent with a constant twisting mogaiing the
rod, it is necessary to keep track of the rotation of the rod about its axis along the length
of the rod. In Appendix B an Euler angle formulation is used to derive the boundary
condition

R -j

m (R/ X R//) . j dS, (5)

L
¢1 =2nTw — /
0
whereTw = N'L/(2r) is the total twist, and the Euler angje describes the rotation of
the rod about the tangent in the top-end clamp. As explained in Appendix B, under normal
conditions we have, = 0.
Thus, for rigid loadingg; is imposed,Q = 27 KTw/L is unknown, and Equation
(1) has to be solved in conjunction with Equati@). For this, an iterative scheme may
be used in which the total twistw is first guessed and successively updated by use of
Equation(5).

Theclampedboundary conditions presented in Equation (4) represent a fixed-grip situation
where the vector®” at the ends = 0 ands = L are computed as part of the solution process.
In the pipe-laying process shown in Figure 1, the components of the tangent Bgcéod
the total rod length. are not knowra priori and must be found as part of the solution process
by asserting that the components of the ved®5K0) vanish. Alternatively, the procedure
presented below can be used to formulate a simply-supported boundary condit® @r
at the sea floor with the rod length being determined by a lift-off condition, such as the
vanishing of the vertical component of the tangent. However, since simply-supported bound-
ary conditions generate rapid changes in the veRtgrwhile clamped boundary conditions
generate rapid changes in ttamgentvector R’, the former do not have as much effect on the
position vectorR as the latter due to the higher order of differentiation. Therefore, we confine
our interest in this study to clamped boundary layers, which are more severe and potentially
more likely to cause crimping.
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To proceed with the analysis, dimensionless quantities (denoted by overbars) are formu-
lated by reference to the length of the rdd,and the weight of the buoyant rod(1—o)gL,
as the characteristic length and force, where the parameter

m
O’I—f
m

is the ratio of the fluid to rod densities (the inverse of the specific gravity). The resulting
dimensionless quantities are given by

— - F K - R
s=—, F=——— k=—, R=—,
L m(l—o)g B L
_ M _ 0 ;
M=—_ =—= N =LN, 6
m(l—o)gL? © m(l—o)gL? (©)
_ T _ \ %4 _ D
r=—— — V=———  D=—.
m(l—o)gL m(l—o)gL L

These are substituted in Equation (1) to provide the dimensionless systembdrs are
dropped hereaftr

(TR) +V' - j/l—0)+F =0,

(QR) +M'+ R x V =0,

R -R =1,

R -V =0,

M =¢?(R xR"),

Q = ke’N’,

(7)

where the dimensionless bending rigidity parameter

2 B

& m(l—o)gL3

is typically << O(1). The dimensionless buoyancy force Equation (3) has the form
o . P N Y
F=E[J—(R'J)R+(D—R'J)R]- (8)

The dimensionless forms of the geometric boundary conditions are still given by Equation
(4) (except theL is replaced with 1), while the final twist boundary condition is given either

by
0 = &?QnkTw), (9)

or by Equation(5). In many applicationsTw is O(1), so Q is O(s?), which is assumed to
be the case in the remainder of this study. This completes the formulation of the governing
equations.
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2.2. INTEGRATION OF THE EQUATIONS

The integration of the governing equations is accomplished as follows. First, Eq@@isn
substituted in(7)1, and the result is then integrated to obtain

o(R-j)R

+C =0, (10)
1-0

D
(T+ ? )R’+V—sj—
1-0

whereC is a constant vector to be determined as part of the problem. Next, the formation of
the vector product oR’ with Equation(7), and the elimination of0 and M via Equations

(9) and(7)s gives

V =g?{27kTw(R' x R")— R" — R'(R"-R")}, (11)

where use has also been made of the relationghipR” = —R” - R” obtained from the
differentiation of Equatior{7)3. The formation of the scalar product &f with Equation(10)
yields an expression for the tensi@n

R-j—D
T:s(R/-j)—C-RHLM, (12)
l1-0
which is inserted with Equatiofll) in Equation(10) to obtain
sS(R-j)—C-R'I\R —sj+C
(R PR =g (13)

+82 {27TKTLU(R/ % R//) _ Rm _ R/(RN . RN)} -0

This is an extraordinary equation for the shape of the rod, since the buoyancy pararaser
dropped out explicitly; it does, of course, still figure in the nondimensionalisation and in the
rod tension Equation (12). The next section discusses the asymptotic analysis needed to solve
Equation(13).

3. Asymptotic analysis

The solution of Equatioril3) follows the classical methods of singular perturbation theory
Kevorkian and Cole [3, pp. 36—117]. Away from the ends of the re@dthe outerregion), the
tension forceT is an O (1) quantity, while the other forces and moments are at nigs?.

Near the clamped ends, the tangent veatary change rapidly, depending on the boundary
conditions, over the scaled distange= s/¢ so thatT andV are O(1), in which case there

is a boundary layer in thener region. The solution of EquatiofL3) in the inner and outer
regions is considered separately, and the solutions are then patched together by matching with
an intermediate co-ordinate.

3.1. THE OUTER SOLUTION
The quantitiesk (s) andC are expanded in regular perturbation series in the paranteter

R(s) = Ro(s) + eR1(s) + *Ra(s) + -+ -,

(14)
C=Co+eC1+%Co+---,
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which are substituted in Equati@f3) to obtain a succession of equations in powers, dfie
first two of which are

0): {s(Ry-j)—Co- Ry} Ry—sj+Co=0,
O(e): s(Ry-jIR, +s(R,-j)Ry— (C1- RY)R, (15)
—(Co-RDRy— (Co- RH)R, +C1 =0.

The use of the inextensibility condition Equatiéf; provides the additional constraints that
Ry-Ry=1andR;- R, =0.

The O (1) solution is obtained as follows. The expressids = xoi + yoj + zok and
Co = c,i + ¢, j +c k are inserted into Equatiofl5); in order to produce a set of component
eguations that are solved by elementary means.dtig solution is

. Cy — S . C
f+ct

yo=—0y/cZ+ (cy — )2+ 2+ a,[c2 4242+ Yo, (16)

CZ
20 = —Xp + Zo,

Cx

wherea = ¢, /|c.|, and Xo, Yo, Zo) are additional constants of integration. This is the three-
dimensional catenary lying in a plane making an angle= arctaric,/c,) with the (i, j)
co-ordinate plane. The constarits, c,, c;) are still unknown and will be determined in the
matching process. We can already observe, however, that solutions come in pairs (concave-
up or concave-down) as thg andzg components of Equatiofil6) are invariant under a
simultaneous sign change @f andc,.

The solution to theO () equation is found from the formation of two successive vector
products ofR; with Equation(15),, which yields:

Ry x (Ry x R) {s(Ry- j) — Co- Ry} + Ry x (Ry x C1) =0. (17)
The use of the triple vector product identity and inextensibility gives

. Ry(Ry-Cp) —C
LT SRy j)—Co- Ry

(18)

The solution of Equation (18) faR; = x1i + y1j +z1k andC1 = d.i +d, j +d_k is obtained
through the use of Equatiqid6) along with elementary integrations to yield
Ri(s) = {(=lexleod, + acZd ) (s) = lexldy Ta(s) + ady I3(s)} i
+{a(cddy + c2dy) In(s) — (ac.d; + |cxld) I2(s)} j
+ {(=lexle.dy + ac?d) Ii(s) — ac.dy I(s) + ad; I3(s)} k
+X1i + Y1j + Z1k,

(19)
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where (X4, Y1, Z,) are integration constants and
Cy — S
(2 +¢2)/cZ+ (c, —5)2+ 2
1
Ve + (e, — )7+ 2

Ii(s) = —

Ir(s) =

I5(s) B sinhr? [ 222

3(8) = — — -
V2 + (cy —5)2+ 2 Jez+c?

3.2. THE INNER SOLUTION

The solution to Equatioril3) may have boundary layers at either end. We derive the form
of the boundary layer solution near= 0 and subsequently adapt this result to obtain the
solution neas = 1.

Within the boundary layer near= 0 the tangent vector changes rapidly@1s/¢), so we
introduce the scaled co-ordinate= s/ and expand the position vector with the series

R(s) = Ao+ eR() = Ao+ eRo(§) + e?R1(&) + - - . (20)
In the boundary layer, Equatiadi 3) is rewritten in terms oﬁ(i;‘) as

/ A ALl oAl A

{gs(ie’-j)—c-ie’}ie “R'-R& R

t+e2nkTw(R x R') —e€j+C =0, (21)

whereR' = dR/d&. The insertion of Equation&l4), and (20) in Equation(21) provides a
hierarchy of equations in powers ofthe first two of which are

01): (Co-Ry)Ry+ Ry + Ry(Ry - Ry) = Co,

0@): &Ry J)Ro - (€ ieilpiei?/ - (o ie’l),ieé o 22
—(Co- R)R, — R, — RL(Ry - Ry) — 2Ry (R - RY)
—£j+ ZnKTw(k,o X i?g) +C1=0.

It is noted that forO (1) values ofT w, twist appears first in th@ (¢) equation.

The solution to theD (1) equation is obtained by forming the vector productf&é,fwith
Equation(22), to get

(R x Ry)' = (Ro x Co). (23)
and then integrating this, we have

k/oxkg=k0XCO+D0, (24)
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whereDg is a constant integration vector. Equati@4) is the equation for the planar elastica
whose solution has been considered by Coyne [16].

In accordance with the principle of least degeneracy (Van Dyke [17, pp. 86-87]), it is
expected that a5 — oo, R, decays asymptotically to a straight line with the folg ~

£ R,(00), where Ry (co) is a still undetermined constant vector. In order to figlco), we
take the limit of Equation(24) as¢ — oo, which requires thafi'g(oo) = Cy in order for
the right side of Equatio24) to remain bounded. Also note that the tangent ve&t{p'm the

boundary layer starts out equalBy até = 0. Thus, we expect the inner solutidy to lie in
the plane spanned gy andCy since twist has no effect at this order of approximation. It is
convenient to define a set of basis vect@rs e,, N) by

Co BoXN
o—, €y = o7
|Col |Bo x N|

e,=e, XN, (25)

so thatR,, lies in the(e,, N) plane. Thus, we expect the inner solution to have the form
Ro(&) = [p(§) — poole, + h(E)N (26)
where, ag — oo, the componentg (¢§) andhi (&) approach the values
p—0 h—§& p—=0 HK—>1,

andp is restricted to the rangeQ p < p. The introduction of Equation (26) into Equation
(24) and the taking of the limg — oo gives

Do = —ap|Cole, , (27)

sincei{g — 0. Next, the elimination oD from Equation (24) and the formation of the vector
product withIA?'0 yields the equation

A

R, = —ozIAi’,o X [ii’o x N — ,oooe,,] |Col, (28)

which is further simplified with the introduction of the rescaled co-ordinate

d d
_ — il 29
r = a|Colé, a 01|C0|dr, (29)
to obtain
&Ry dRy .
dr2 = —F X [Ro x N — ,Oooe,,] . (30)

Equation(30) provides the separated component equations:

d?p dh d’h dp

oz~ & @2 @ (1)
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Straightforward integration and use of the boundary conditions as oo, along with the
inextensibility constrainfdRy/dr| = |Cyl, gives

do 1 02 dh o p?
P — 2 22 P 32
a ~PVico 4 & 1Co T 2 (32)

Further integration yields the solution

= 2 sech( or + 7 )
P _¢—|co| Ca 1 ° )

2 or
h=ho+ tanh( + ro>
ICol ~ JICl V1Col
whererg andhg are integration constants. The rescaled co-ordingesliminated from these
expressions, which are then substituted in Equation (26) to obtain the leading-order inner-layer
solution

ieo@):[ msech(&ﬂ% [+70) = }
o+ & = 2 tanh(&[Cal + 1) | v (34)

The intggration constan{®o, peo, ho) are determined by the boundary conditiong at O,
that is,Ro(0) = 0 and dRy(0)/dé = By, which give the formulas

1/2
1 1 B Col?
ro = sech! (22 lOC>’<20) ,
° (35)
2 2
Poo = ———— Sechryg, ho = ——— tanhry.
V1Col V|Col

In order to obtain a solution for the boundary layer neat 1, we introduce the scaled
co-ordinater = (1 — s)/¢ and the expansion

R(s) = A1 +eR() = A1+ eRo(2) + €Ry(2) + -+ - (36)

An analysis similar to the one above gives

Ro(2) = SeCh(C\/ |lj — Col + r1> - Goo:| e,

Nes

+[h1+§ \/Uzitanh@,/ ~Col +r1)], 37)

where the local vector system nea& 1 is given by

j — C B, x P
P=on, 0, ey=—L, e, =e, x P. (38)
lj — Col |B1 x P|
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The mtegratlon constani®s, o, k1) are determined by the boundary conditiong at O,
that is, Ro(0) = 0 and cRo(O)/dg“ = — B, which give the formulas

1/2
L1 1] Bix G- coP
=sech!{|=—-=/1— ,
" (2 2/ j — CoP?

sechry, hi =

(39)

tanhry.

O =

2 2
VIj = Col VIj = Col

3.3. MATCHING THE INNER AND OUTER SOLUTIONS

The matching between the inner and outer solutions is conducted with the method of interme-
diate co-ordinates (Kevorkian and Cole [3, pp. 36—117]). At the left-hand boundary, the ar-
clengths and the boundary-layer co-ordindteare both expressed in terms of an intermediate
co-ordinaten (e) by

S=T]T, $=_a

wheren(¢) is such thaty(e) ande/n(e) are botho(l), andz is fixed. The inner solution at
s = 0 has the form:

A T
R(s) = Ao+ ko (1) + - (40)
&
while the outer expansion becomes
R(s) = Ro(nt) + ¢Ra(n7) + - - - . (41)

The matching process
lim {Ao +eRg ("—T) ¥ } — lim {Ro(57) + e R1(n7) + - - -} (42)
e—0 & e—0

leads to theD (1) and O (¢) conditions:

Ap = Ro(0),

2 (43)
— Py + <h0 m) N = R1(0).

Note that the first equation determines the constéxigs Yo, Zo).
A similar matching process between the outer solution and the inner solution redr
gives theO (1) and O (¢) equations:

A1 = Ro(1),

— +(h —#>P—R(l) (44)
Oc0€s 1 m = ().
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Equation(44), provides a set of three nonlinear equations for the determinati6ly.ofhere

are two solutions: a tensile solution (concave up) withk< 0 and a compressive solution (con-
cave down) witre, > 0. Since typically the, < 0 solution is the physically realised one, only
this solution is considered in the present study. O@gds known, (rg, ho, Poos 1, A1, Oso)

are found from Equation&35) and (39). Equations(43), and (44), then provide six linear
equations for the components 6f and the integration constants (X1, Z;). Higher-order
constant termsg(g.C> in the C expansion of Equatiofil4),) can be obtained by solving for
additional terms in the inner and outer solutions and continuing with the matching process.
This is a difficult task since the higher order inner-layer equatieng. Equation (22)) can

no longer be solved analytically.

4. Comparison with numerical results

In this section we compare the truncated analytical solution constructed in the previous section
with results obtained by numerically integrating Equati®8). We will only consider the case

of specified rotation, in which Equatiab) is enforced. The boundary conditions at the water
surfaces = 1 are then naturally expressed in terms of Euler angles. The angles defined in the
Appendix B are as follows?; := 6(1) is the stern angley, := ¥ (1) the yaw angle of the

ship; andg; := ¢ (1) the rotation angle of the rod in the clamp. With these definitidhsin
Equation(4) can be written in terms of the Euler angles as

B, = cOSyr COSH1i + Sinb1j + Siny, CosH k. (45)

For simplicity we takedq = 0, Bg = i. Solution of the problem then requires the specification
of the following six parameters:

ai, ap, az, 01, Y1, ¢, (46)

where(as, ay, az) are the dimensionless componentsdaf

The system is solved numerically by using COLNEW, a slightly modified version of the
general-purpose collocation code COLSYS (Ascbeal. [18]) for solving boundary-value
problems in ordinary differential equations. Once a solution to the problem is found, the
bending moment and tension can be obtained from the Equafianand (12), respectively,
and the shear force, subsequently, from Equatid). Although the system of equations is
stiff for small ¢, COLNEW experiences no problems withas small as ©01, provided a
sufficiently fine mesh is used. Convergence problems when integrating the stiff system of
equations for a twisted pipeline have been reported by Konuk [10].

Figure 2 shows a comparison of the analytical results with the numerical calculations for
a; = 0754, = 0-2,a3 = 0-1 andf, = 0, 1 = —x/2 and¢, = O for ¢ = 0-05. (From a
mathematical viewpoint, this is not a particularly small value ahd has been chosen so that
the differences between the approximate and numerical solutions can be seen readily.) The
solid line shows the results of numerical calculations, while the long dash line shows the two-
term outer solution, and the dotted lines show the one-term inner solutions. The agreement is
very reasonable and becomes better for smaller valugsasfshown in Figure 3 far = 0-01.
We note that the total twisfw is numerically found to be 4025/@x) and 13286/@x) for
thee = 0-05 ande = 0-01 cases, respectively, thus confirming our assumptionZthats
0.
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Figure 2. (a) Side view and (b) top view of the outer (dashed), inner (dotted) and numerical (solid) solution of the
hanging rod¢; = 0-75,ap = 0-2, a3 =01, 61 = 0°, ¥y = —90°, ¢1 = 0°, ¢ = 0-05, x = 0-75).
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Figure 3. (a) Side view and (b) top view of the outer (dashed), inner (dotted) and numerical (solid) solution of the
hanging rod¢1 = 0-75,a2 = 0-2, a3 =0-1, 61 = 0°, Y1 = —90°, ¢1 = 0°, ¢ = 0.01, « = 0.75).

In applying the analysis to the laying of a clamped pipeline, it is natural to assume an initial
near-catenary shape for the pipeline (a true catenary is not attainable as tosgas-zero),
which is the situation within the industrial context. The number of independent boundary-
value parameters is then reduced by two. In order to see this recall thdintemsional
catenary in the@, j) plane, with rectangular co-ordinatéX, Y), has the form (sees.g,
Meriam and Kraige [19, pp. 305-307])

T X
y =2 (coshmg — 1) ,
mg To

0(s) = arctan%, (47)
0

T, 272

L2 = (—0 + D) — 20 >
mg m=g

where: Ty is the horizontal component of the tension at the top of the catenarypaadhe

water depth. The various quantities in Equat{dif) are evaluated at the end point= L and
equated with the various boundary conditions, which gives the dimensionless equations

a =P (cosh% — 1) ,
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Figure 4. Near-catenary solutions: (a) side view and (b) top view of the outer (dashed), inner (dotted) and
numerical (solid) solution of the hanging ragh(= 2a1, az = 0-1, 1 = 90°, ¢1 = 0°, ¢ = 0-05, k = 0-75).
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Figure 5. Near-catenary solutions: (a) side view and (b) top view of the outer (dashed), inner (dotted) and
numerical (solid) solution of the hanging ragh(= 2a1, az = 0-1, 1 = 90°, ¢1 = 0°, ¢ = 0-01, x = 0-75).
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0, = arctanB, (48)

(az+p)* =1+ p%
whereg is the dimensionless end tension given by

T

p— (49)

B =
It follows that by specifying one of the quantities, a, or 6, (or any relationship among
them), all three (ang@) are fixed.

Figures 4 and 5 show near-catenary solutions satisfying: 2a, (giving 6, = 80-30°,
a; = 0-421760,a, = 0-843519,8 = 0-170995),a3 = 0-1 andy; = 9C°, for ¢ = 0-05 and
¢ = 0-01. Again, the results of the numerical calculations are shown by solid lines, while the
long-dash line shows the two-term outer solution and the dotted lines show the one-term inner
solutions. The agreement becomes excellent for the smaller ¥atu@-01.

5. Concluding remarks

The method of matched asymptotic expansions has been used to solve the general problem
of a clamped bent and twisted three-dimensional rod hanging under gravity and buoyancy
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k
Figure 6. The rod element used for calculating the buoyancy force.

forces. Both fixed twisting moment and fixed rotation boundary conditions are considered.
The leading-order term of the inner expansion and the first two terms of the outer expansion
are obtained in closed form. To this level of approximation twist does not play a role. The
analytical formulation gives good agreement with numerical solutions of the full system of
equations. The analysis is also applied to the near-catenary shapes that occur for the laying of
a clamped heavy cable or a pipeline.

6. Appendix A: The buoyancy force

The buoyancy force acting on an element of the three-dimensional rod is derived from a
modification of Pedersen’s analysis [15]. Figure 6 shows a rod element of lengttadluid

that exerts pressures on the lateral sides. To be consistent with Figure 1, gravity points in the
—j direction. The Frenet basis syst¢®', n = R”/|R"|, b = R’ x n} is shown on the lower
cross-sectional face of the element, and the angular co-ordinateasures the inclination of
points along the lateral surface of the rod from the normal directi¢positive w is inclined
towards the binormah). For clarity, the length of the element Has been exaggerated relative

to the rod radiug. Within the fluid, the pressure distribution is given by

p=—prg(D—y), (A1)
where:y is the vertical co-ordinate of a point in the fluid, apgdis the fluid density.
In order to calculate the buoyancy force, the pressure distribution must be integrated over
the lateral sides of the element. Since the rod element is bent with a radius of curyaRifg 1
the infinitesimal surface area on the compressive side of the element is slightly smaller than
that on the tensile side. The surface area of the small shaded region in Figure 6 is given by
dA = a[1 — a|R"| cosw] dw ds
and the outward normal to the element is

H = ncosw + bsinw.

The total buoyancy force acting on the rod element is obtained by evaluating the integral

Fds:/pHdA, (A2)
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which must be carried out using theco-ordinates of the points on the lateral face of the rod
element (as described layin Figure 6) in Equation (Al). It is straightforward to show that
the y co-ordinate around the lateral perimeter of the rod element can be written

y=R-j+am-j)cosw+ab-j)sinw,

where the vertical co-ordinate of the centre line of the rod element is givénbyR - j. The
substitution of the various terms in (A2) provides the formula

F = —pga[Z"(D—R-j—a(n-j)cosw—a(b- j)sinw) 3)
(ncosw + bsinw)(1 —a|R"| cosw) dw ,
which, after evaluation of the integral and the introductiomof= p ;ma? yields
F=mggln-jn+ - j)b+(D—R-jR"]. (A4)

Equation(3) is obtained by using the vector identity
j=m-jn+®-j)Hb+ (R -jR

in Equation (A4).

7. Appendix B: The twist formulation

In order to apply displacement-controlled boundary conditions, a local frame of so-called
directors{d,, d,, ds} is introduced at each point along the rod. The diredtppoints along

the rod tangent, that idz = R’, while d, andd, form an arbitrarily oriented set of mutually
orthogonal vectors in the cross-section of the rod. The Euler anglgs ¢ relate the local
director frame to the fixed framig, j, k} as follows:

d, = (—siny cos¢ + cosy sing sing) i — sing cosy j

+ (cosyr cosg + siny sing sind) k,

d, (sinyr sing + cosy cosg Sinf) i — cos¢y cosh j (B1)

+ (— cosyr sing + siny cosg sind) k,
d3 = cosyrcosf i + sind j + siny cosb k.

Note that the two angle® andy completely determine the orientation of the tangent vector
ds and, after an integration, the centreline of the rod. The third apggerequired to specify
the orientation of the other two directord,( d>). A fully rigid loading condition is obtained
by specification of the three Euler angles at both ends of the rod.

The parametrisation of Equation (B1) in terms of Euler angles is such that it respects the
actual application of the three angles in practice. Specifically, if the transformation matrix in
Equation (B1) is denoted bR, then we have the decomposition

R = R4Ry Ry, (B2)
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whereRy represents a counterclockwise rotation aldotiirough an anglé, R, represents a
clockwise rotation about through an anglg,, andR,, represents a counterclockwise rotation
aboutd; through an angle (see Figure 1). By the nature of the problem, at the top end of the
clamped rod only the first two angles will normally be imposed so thapthegle is zero. We
now derive an equation faf which imposes the zero-angle boundary condition.

We start by noting that the rate of change of the director frame can be written

di=uxd, (i=1273), (B3)

whereu = R’ x R” = k1d1 + kod> + k3d3 is the curvature vector expressed in terms of
the director basis at a rod location. The use of Equation (B1) in Equation (B3) provides the
relations

0 = Kk1C0Sp — k> SiNg,
Y’ = (k1SiNg + kp COSP) / COSH, (B4)
¢ = K3+ tand (k1 SiNg + ko COSP) ,

for the rates of change of the Euler angles. The information contained in Equationsa(ii)
(B4), is effectively already contained in Equati¢h), so we need to be concerned only with
the equation forp. Now note that

K1=u-d1=(R,XR/,)-d]_:—RN-dz,

(BS)
ko=u-dy= (R xR")-d,=R"-d\,

and that<z = N’. Equations (B1) and (B5) then allow Equation (B#) be rewritten as
¢' = N'+tanf [(R" - k)cosy — (R" -i)siny]. (B6)
The use of Equation (Bi)ields the expressions
R -k

A R -i
cosh = /1— (R’ - j)?, Cosy = ———,
V1= (R - j)?

which allows the right-hand side of Equation (B6) to be expressed in terms of Cartesian system
variables as

sind =R’ j, siny =
(B7)

R.j
¢ =N — T’J-J‘)z (R x R')-j. (B8)

Integration along the length of the rod gives
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L
¢1=N/L—/
0

where¢g, = ¢ (L) is the twist angle imposed at the top end of the rod, and the origin of the

R -j
1-(R"-j)?

(R'x R")- jds,

(B9)

angle¢ has been chosen such tligi0) = 0 (this fixes a direction fod,, and hencels, in
the rod’s cross-section). Note th@’ x R”) - j is the curvature of the rod aboyit so for
a rod deforming in thei, j) plane, the accrued anglg along the entire length of the rod
equals the total twist. It is important to note that the above analysis assumesities not go

throughsr /2, at which angle a singularity occurs. For a heavy cable or pipeline hanging under

gravity, this assumption is normally satisfied.

Nomenclature

s, L
0.9, ¢
X, Y, 7Z

T’Q

Ag, A1
E, K
Ry (s)

Cx,Cy, Cz
Xo. Yo, Zo

X1, V1,21
X1, Y1, 21

Ru(8)

p (&), h(§)

r

Ru(0)

1, 000, h1

arclength co-ordinate, rod length;
Euler angles;

Cartesian components of the position
vector;

tangential tension and twisting mo-
ment;

rod mass density per arclength and
gravitational acceleration;

the rate of material rotation and the
total twist along the rod;

Young’s modulus, shear modulus,
and Poisson'’s ratio;

principal normal and binormal vec-
tors;

position boundary conditions;

the dimensionless bending rigidity
and the ratio of torsional rigidity to
bending rigidity;

O(&™) position vector in the outer
layer;

components oC;

integration constants faRq(s);

components oRy;
integration constants faR (s);

0O(&™) position vector in the inner
layer;

components oRg(£);

rescaled boundary layer co-ordinate;

O(&™) position vector in the inner
layer;
integration constants fakg(¢);

i,k

D
R(s),R'(s)
V.M

F

B, K

1,J

myg.o

By, B,
c,C,

X0, Y0, 20

dy, dy, d,
£, RE)

ep,en, N

D05r05p007h0
¢, R(Z)

eyvea,P

n(e),

Cartesian basis vectors;
depth of immersion fluid,;
position and tangent vectors;

shear force and bending moment vec-
tors;

the buoyancy force per arclength;
bending and torsional rigidities;

the second area moment and polar
moment of inertia;

the linear mass density of displaced
fluid, the ratio of mass densities
mf/m;

tangent boundary conditions;

constant force vector and compo-
nents onO (e");

components oR;

sighumgy);

angle between catenary plane and the
x-axis;

components o€'q;

scaled co-ordinate and position vec-
tor for boundary layer near= 0;

local basis vectors at= 0;

integration constants faRq(€);

scaled co-ordinate and position vec-
tor for the boundary layer near =

L;

local basis vectors at= L;

intermediate co-ordinates for match-
ing the layers;
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ai,az,az components of the dimensionless; B, Tp parameters for near-catenary solu-
tions;
w,a angle between normal and binormal  p, oy, y fluid pressure, volume density of the
vectors, rod radius; fluid, vertical co-ordinate in the fluid;
H,dA outward lateral normal and infinitesi- dy,dp, d3 material director basis;
mal surface area of rod element;
u the curvature vector; K1, K2, K3 components of the curvature vector in

the director basis.
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